| @Câu 6. [id1134] (Ts10 chuyên tỉnh Bình Định 2019-2020) Gọi $n$ số ${{x}_{1}}\,;\,\,{{x}_{2}}\,;\,\,{{x}_{3}}\,;\,...\,;\,\,{{x}_{n}}\,\,\,\left( n\in \mathbb{Z}\,,\,\,n\ge 3 \right)$ thỏa mãn: mỗi số ${{x}_{i}}\,\,\left( i=\overline{1\,,\,n} \right)$ bằng $2019$ hoặc $-2019$ và ${{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+...+{{x}_{n-1}}{{x}_{n}}+{{x}_{n}}{{x}_{1}}=0\,.$ Chứng minh rằng $n$ là một bội của $4\,.$ |
Thư viện tra cứu id trong tài liệu
Hướng dẫn xem lời giải theo mã id trong tài liệu
Thứ Sáu, 24 tháng 1, 2020
| @Câu 6. [id1134] (Ts10 chuyên tỉnh Bình Định 2019-2020) Gọi $n$ số ${{x}_{1}}\,;\,\,{{x}_{2}}\,;\,\,{{x}_{3}}\,;\,...\,;\,\,{{x}_{n}}\,\,\,\left( n\in \mathbb{Z}\,,\,\,n\ge 3 \right)$ thỏa mãn: mỗi số ${{x}_{i}}\,\,\left( i=\overline{1\,,\,n} \right)$ bằng $2019$ hoặc $-2019$ và ${{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+...+{{x}_{n-1}}{{x}_{n}}+{{x}_{n}}{{x}_{1}}=0\,.$ Chứng minh rằng $n$ là một bội của $4\,.$ |
By Vũ Ngọc Thành bản Vàng Pheo, xã Mường So, Phong Thổ, Lai Châu at tháng 1 24, 2020
[0D3-Số học
No comments
0 nhận xét:
Đăng nhận xét