| @Câu 89. [id1496] (HSG 11 – Vĩnh Phúc 2014-2015) Cho dãy số $\left( {{u}_{n}} \right)$ được xác định bởi: ${{u}_{1}}=1,\,\,{{u}_{n+1}}=\dfrac{{{u}_{n}}}{{{u}_{n}}+1},\,\,n=1,2,3,...$ Tính: $\lim \dfrac{2014\left( {{u}_{1}}+1 \right)\left( {{u}_{2}}+1 \right)...\left( {{u}_{n}}+1 \right)}{2015n}$ . |
Thư viện tra cứu id trong tài liệu
Hướng dẫn xem lời giải theo mã id trong tài liệu
Thứ Năm, 30 tháng 1, 2020
| @Câu 89. [id1496] (HSG 11 – Vĩnh Phúc 2014-2015) Cho dãy số $\left( {{u}_{n}} \right)$ được xác định bởi: ${{u}_{1}}=1,\,\,{{u}_{n+1}}=\dfrac{{{u}_{n}}}{{{u}_{n}}+1},\,\,n=1,2,3,...$ Tính: $\lim \dfrac{2014\left( {{u}_{1}}+1 \right)\left( {{u}_{2}}+1 \right)...\left( {{u}_{n}}+1 \right)}{2015n}$ . |
By Vũ Ngọc Thành bản Vàng Pheo, xã Mường So, Phong Thổ, Lai Châu at tháng 1 30, 2020
[1D3-9.Dãy số trong các đề thi học sinh giỏi
No comments
0 nhận xét:
Đăng nhận xét