| @Câu 30. [id1437] Cho dãy số $\left( {{u}_{n}} \right)$ được xác định như sau: ${{u}_{1}}=1$, ${{u}_{2}}=3$, ${{u}_{n+2}}=2{{u}_{n+1}}-{{u}_{n}}+1$, $n=1,2,...$. Tính $\underset{n\to +\infty }{\mathop{\lim }}\,\dfrac{{{u}_{n}}}{{{n}^{2}}}$. |
Thư viện tra cứu id trong tài liệu
Hướng dẫn xem lời giải theo mã id trong tài liệu
Thứ Năm, 30 tháng 1, 2020
| @Câu 30. [id1437] Cho dãy số $\left( {{u}_{n}} \right)$ được xác định như sau: ${{u}_{1}}=1$, ${{u}_{2}}=3$, ${{u}_{n+2}}=2{{u}_{n+1}}-{{u}_{n}}+1$, $n=1,2,...$. Tính $\underset{n\to +\infty }{\mathop{\lim }}\,\dfrac{{{u}_{n}}}{{{n}^{2}}}$. |
By Vũ Ngọc Thành bản Vàng Pheo, xã Mường So, Phong Thổ, Lai Châu at tháng 1 30, 2020
[1D3-9.Dãy số trong các đề thi học sinh giỏi
No comments
0 nhận xét:
Đăng nhận xét