Loading web-font TeX/Math/Italic

Thư viện tra cứu id trong tài liệu

Hướng dẫn xem lời giải theo mã id trong tài liệu

Chủ Nhật, 4 tháng 10, 2020

[tc90][T6/510 Toán học & tuổi trẻ số 510, tháng 12 năm 2019] Tìm tham số m để phương trình 4^x+2=m\cdot 2^x(1-x)x có nghiệm duy nhất.

Lời giải

Ta có \begin{align*} &4^x+2=m\cdot 2^x(1-x)x\\ \Leftrightarrow&2^x+2^{1-x}=m\cdot x(1-x).\tag{*} \end{align*}
Nếu x là nghiệm của phương trình đã cho thì 1-x cũng là nghiệm của phương trình này, vì ta có vai trò của xx-1 hoán đổi được cho nhau. Vậy khi x là nghiệm duy nhất thì x=1-x\Leftrightarrow x=\dfrac{1}{2}.
Thay giá trị này vào phương trình ta có m=8\sqrt{2}.
Thay m=8\sqrt{2} vào phương trình (*) ta có phương trình
2^x+2^{1-x}= 8\sqrt{2}(1-x)x.
Áp dụng BĐT Cauchy ta có vế trái là
2^x+2^{1-x}\ge 2\sqrt{2^x\cdot 2^{1-x}}=2\sqrt{2}.
Áp dụng BĐT Cauchy ta có vế phải là
8\sqrt{2}(1-x)x\le 2\sqrt{2}(1-x+x)^2=2\sqrt{2}.
Như vậy, đẳng thức xảy ra khi và chỉ khi trong cả hai BĐT ta có dấu bằng, tức là chỉ khi x=1-x, hay là chỉ khi x=\dfrac{1}{2} là nghiệm duy nhất.
Vậy phương trình có nghiệm duy nhất khi và chỉ khi m=8\sqrt{2}.

Bài viết cùng chủ đề:

0 nhận xét:

Đăng nhận xét