| @Câu 42. [id1389] (HSG12 tỉnh Lào Cai năm 2018-2019) Cho dãy số $\left( {{u}_{n}} \right)$ xác định như sau $\left\{ \begin{align} & {{u}_{1}}=\dfrac{1}{2};{{u}_{2}}=3 \\ & {{u}_{n+2}}=\dfrac{{{u}_{n+1}}{{u}_{n}}+1}{{{u}_{n+1}}+{{u}_{n}}},\forall n\ge 1 \\ \end{align} \right.$. Chứng minh rằng dãy $\left( {{u}_{n}} \right)$ có giới hạn và tìm giới hạn đó |
Thư viện tra cứu id trong tài liệu
Hướng dẫn xem lời giải theo mã id trong tài liệu
Thứ Năm, 30 tháng 1, 2020
| @Câu 42. [id1389] (HSG12 tỉnh Lào Cai năm 2018-2019) Cho dãy số $\left( {{u}_{n}} \right)$ xác định như sau $\left\{ \begin{align} & {{u}_{1}}=\dfrac{1}{2};{{u}_{2}}=3 \\ & {{u}_{n+2}}=\dfrac{{{u}_{n+1}}{{u}_{n}}+1}{{{u}_{n+1}}+{{u}_{n}}},\forall n\ge 1 \\ \end{align} \right.$. Chứng minh rằng dãy $\left( {{u}_{n}} \right)$ có giới hạn và tìm giới hạn đó |
By Vũ Ngọc Thành bản Vàng Pheo, xã Mường So, Phong Thổ, Lai Châu at tháng 1 30, 2020
[1D3-9.Dãy số trong các đề thi học sinh giỏi
No comments
0 nhận xét:
Đăng nhận xét