Bài toán 9.[APMO $1991$] Cho $\left\{ \begin{array}{l}&a_i > 0, b_i > 0, \forall i = \overline{1,n}\\&\displaystyle\sum\limits_{i=1}^{n}a_i = \displaystyle\sum\limits_{i=1}^{n}b_i.\end{array} \right.$ |
Lời giải
Cách 1. Đặt $P = \displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i}$ và $Q =\displaystyle\sum\limits_{i=1}^{n}\dfrac{a_ib_i}{a_i+b_i}$. Dễ thấy \[P + Q = \displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i+a_ib_i}{a_i+b_i} = \displaystyle\sum\limits_{i=1}^{n}a_i \tag{1}\] Sử dụng giả thiết đã cho và áp dụng bất đẳng thức \[a_ib_i \leq \left(\dfrac{a_i+b_i}{2}\right)^2, \forall i = \overline{1,n} \tag{2}\] thì \[Q= \displaystyle\sum\limits_{i=1}^{n}\dfrac{a_ib_i}{a_i+b_i} \leq \displaystyle\sum\limits_{i=1}^{n}\dfrac{(a_i+b_i)^2}{4(a_i+b_i)} = \displaystyle\sum\limits_{i=1}^{n}\dfrac{a_i+b_i}{4}=\dfrac{1}{4}\left(\displaystyle\sum\limits_{i=1}^{n}a_i + \displaystyle\sum\limits_{i=1}^{n}b_i\right)=\dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}a_i \tag{3}\] Từ $(1)$ và $(3)$ suy ra $$\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} \geq \dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}a_i.$$ Đẳng thức xảy ra khi và chỉ khi $a_i=b_i, \forall i =\overline{1,n}$.
Cách 2. Với giả thiết đã cho, theo BĐT Cauchy thì $$\dfrac{a^2_i}{a_i+b_i} = a_i - \dfrac{a_ib_i}{a_i+b_i} \overset{(*)}{\geq} a_i-\dfrac{(a_i+b_i)^2}{4(a_i+b_i)}=\dfrac{3a_i-b_i}{4}, \forall i = \overline{1,n}$$ ((*) đúng là do áp dụng BĐT ($2$)) $$\Rightarrow \displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} \geq \displaystyle\sum\limits_{i=1}^{n}\dfrac{3a_i-b_i}{4} = \dfrac{1}{4}\left(3\displaystyle\sum\limits_{i=1}^{n}a_i-\displaystyle\sum\limits_{i=1}^{n}b_i\right) = \dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}a_i.$$
Cách 3. Theo BĐT Schwarz ta có $$\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} \geq \dfrac{\left(\displaystyle\sum\limits_{i=1}^{n}a_i\right)^2}{\displaystyle\sum\limits_{i=1}^{n}(a_i+b_i)} = \dfrac{\left(\displaystyle\sum\limits_{i=1}^{n}a_i\right)^2}{\displaystyle\sum\limits_{i=1}^{n}a_i+\displaystyle\sum\limits_{i=1}^{n}b_i} = \dfrac{\left(\displaystyle\sum\limits_{i=1}^{n}a_i\right)^2}{2\displaystyle\sum\limits_{i=1}^{n}a_i}=\dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}a_i.$$
Cách 4. Với giả thiết đã cho thì $$\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} - \displaystyle\sum\limits_{i=1}^{n}\dfrac{b^2_i}{a_i+b_i}=\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i-b^2_i}{a_i+b_i} = \displaystyle\sum\limits_{i=1}^{n}(a_i-b_i) = \displaystyle\sum\limits_{i=1}^{n}a_i - \displaystyle\sum\limits_{i=1}^{n}b_i = 0.$$ Do đó $\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} = \displaystyle\sum\limits_{i=1}^{n}\dfrac{b^2_i}{a_i+b_i}$, nên $$2\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} = \displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i+b^2_i}{a_i+b_i} \overset{(**)}{\geq} \displaystyle\sum\limits_{i=1}^{n}\dfrac{\left(a_i+b_i\right)^2}{2(a_i+b_i)} = \dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}(a_i+b_i) = \displaystyle\sum\limits_{i=1}^{n}a_i$$ (**) đúng là do BĐT $$a^2_i+b^2_i \geq \dfrac{(a_i+b_i)^2}{2};\, \forall i = \overline{1,n}.$$ Vậy $\displaystyle\sum\limits_{i=1}^{n}\dfrac{a^2_i}{a_i+b_i} \geq \dfrac{1}{2}\displaystyle\sum\limits_{i=1}^{n}a_i$.
0 nhận xét:
Đăng nhận xét