Processing math: 100%

Thư viện tra cứu id trong tài liệu

Hướng dẫn xem lời giải theo mã id trong tài liệu

Thứ Ba, 22 tháng 9, 2020

[T6/513 Toán học & tuổi trẻ số 513, tháng 3 năm 2020] Cho các số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng \sqrt{\dfrac{ab}{bc^2 + 1}} + \sqrt{\dfrac{bc}{ca^2 + 1}} + \sqrt{\dfrac{ca}{ab^2 + 1}} \leq \dfrac{a + b + c}{\sqrt{2}}.

[T6/513 Toán học & tuổi trẻ số 513, tháng 3 năm 2020] Cho các số thực dương a, b, c thỏa mãn abc = 1. Chứng minh rằng \sqrt{\dfrac{ab}{bc^2 + 1}} + \sqrt{\dfrac{bc}{ca^2 + 1}} + \sqrt{\dfrac{ca}{ab^2 + 1}} \leq \dfrac{a + b + c}{\sqrt{2}}.


Lời giải


Trong lời giải bài toán này chúng ta sẽ dùng các bất đẳng thức (BĐT) sau:
  • Bất đẳng thức Buyakovsky: Với các số thực a, b, c, x, y, z: (a^2 + b^2 + c^2)(x^2 + y^2 + c^2) \geq (ax + by + cz)^2
    \begin{align*} (a^2 + b^2 + c^2)(x^2 + y^2 + c^2) - (ax + by + cz)^2 &= (ay - bx)^2 + (bz - cy)^2 + (cx - az)^2\\ & \geq 0. \end{align*}
  • với các số thực dương x, y có: \dfrac{1}{x} + \dfrac{1}{y} \geq \dfrac{4}{x + y}
    \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{x + y}{xy} ; (x + y)^2 - 4xy = (x - y)^2 \geq 0.
Ta có: \sqrt{\dfrac{ab}{bc^2 + 1}} = \sqrt{\dfrac{ab}{bc^2 + abc}} = \dfrac{1}{\sqrt{c}} \cdot \sqrt{\dfrac{a}{c + a}}
tương tự cho hai số hạng còn lại của biểu thức ở vế trái của BĐT cần chứng minh (kí hiệu là P) ta thu được: P = \dfrac{1}{\sqrt{c}} \cdot \sqrt{\dfrac{a}{c + a}} + \dfrac{1}{\sqrt{a}} \cdot \sqrt{\dfrac{b}{a + b}} + \dfrac{1}{\sqrt{b}} \cdot \sqrt{\dfrac{c}{b + c}}.
Sử dụng các bất đẳng thức 1)2) ta có: P^2 \leq \left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{1}{b} \right) \cdot \left( \dfrac{a}{c + a} + \dfrac{b}{a + b} + \dfrac{c}{b + c} \right) ;
Khi đó { \begin{align*} \left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{1}{b} \right) \cdot \dfrac{a}{c + a} \leq & \dfrac{a + c}{ca} \cdot \dfrac{a}{c + a} + \dfrac{a}{4b} \cdot \left( \dfrac{1}{c} + \dfrac{1}{a}\right)\\ = &\dfrac{1}{c} + \dfrac{1}{4b} + \dfrac{a}{4bc} = ab + \dfrac{ca}{4} + \dfrac{a^2}{4}. \end{align*}
} Tương tự: \left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{1}{b} \right) \cdot \dfrac{b}{a + b} \leq bc + \dfrac{ab}{4} + \dfrac{b^2}{4};
\left( \dfrac{1}{c} + \dfrac{1}{a} + \dfrac{1}{b} \right) \cdot \dfrac{c}{b + c} \leq ca + \dfrac{bc}{4} + \dfrac{c^2}{4}.
Suy ra: { \begin{align*} P^2 \leq & \dfrac{5}{4}(ab + bc + ca) + \dfrac{1}{4}(a^2 + b^2 + c^2)\\ = & \dfrac{1}{2}(a + b + c)^2 - \dfrac{1}{4}(a^2 + b^2 + c^2 -ab - bc - ca)\\ = & \dfrac{1}{2}(a + b + c)^2 - \dfrac{1}{8} \left[ (a - b)^2 + (b - c)^2 + (c - a)^2\right]\\ \leq & \dfrac{(a + b + c)^2}{2}. \end{align*}
}Do đó: P \leq \dfrac{a + b + c}{\sqrt{2}}.
Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.

Bài viết cùng chủ đề:

0 nhận xét:

Đăng nhận xét